Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 155-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298801

RESUMO

Background: Safety signal learning (SSL), based on conditioned inhibition of fear in the presence of learned safety, can effectively attenuate threat responses in animal models and humans. Difficulty regulating threat responses is a core feature of anxiety disorders, suggesting that SSL may provide a novel mechanism for fear reduction. Cross-species evidence suggests that SSL involves functional connectivity between the anterior hippocampus and the dorsal anterior cingulate cortex. However, the neural mechanisms supporting SSL have not been examined in relation to trait anxiety or while controlling for the effect of novelty. Methods: Here, we investigated the neural mechanisms involved in SSL and associations with trait anxiety in a sample of 64 healthy (non-clinically anxious) adults (ages 18-30 years; 43 female, 21 male) using physiological, behavioral, and neuroimaging (functional magnetic resonance imaging) data collected during an SSL task. Results: During SSL, compared with individuals with lower trait anxiety, individuals with higher trait anxiety showed less fear reduction as well as altered hippocampal activation and hippocampal-dorsal anterior cingulate cortex functional connectivity, and lower inferior frontal gyrus and ventrolateral prefrontal cortex activation. Importantly, the findings show that SSL reduces threat responding, across learning and over and above the effect of novelty, and involves hippocampal activation. Conclusions: These findings provide new insights into the nature of SSL and suggest that there may be meaningful variation in SSL and related neural correlates as a function of trait anxiety, with implications for better understanding fear reduction and optimizing interventions for individuals with anxiety disorders.

2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014148

RESUMO

Early-life adversity is pervasive worldwide and represents a potent risk factor for increased mental health burden across the lifespan. However, there is substantial individual heterogeneity in associations between adversity exposure, neurobiological changes, and mental health problems. Accounting for key features of adversity such as the developmental timing of exposure may clarify associations between adversity, neurodevelopment, and mental health. The present study leverages sparse canonical correlation analysis to characterize modes of covariation between age of adversity exposure and the integrity of white matter tracts throughout the brain in a sample of 107 adults. We find that adversity exposure during middle childhood (ages 5-6 and 8-9 in particular) is consistently linked with alterations in white matter tract integrity, such that tracts supporting sensorimotor functions display higher integrity in relation to adversity exposure while tracts supporting cortico-cortical communication display lower integrity. Further, latent patterns of tract integrity linked with adversity experienced across preschool age and middle childhood (ages 4-9) were associated with trauma-related symptoms in adulthood. Our findings underscore that adversity exposure may differentially affect white matter in a function- and developmental-timing specific manner and suggest that adversity experienced between ages 4-9 may shape the development of global white matter tracts in ways that are relevant for adult mental health.

3.
Neurobiol Stress ; 21: 100497, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36532365

RESUMO

Exposure to trauma throughout the lifespan is prevalent and increases the likelihood for the development of mental health conditions such as anxiety and post-traumatic stress disorder (PTSD). Safety signal learning (SSL)--a form of conditioned inhibition that involves reducing fear via conditioned safety--has been shown to effectively attenuate fear responses among individuals with trauma exposure, but the association between trauma exposure and the neural mechanisms of SSL remains unknown. Adults with varied prior exposure to trauma completed a conditioned inhibition task during functional MRI scanning and collection of skin conductance response (SCR). Conditioned safety signals reduced psychophysiological reactivity (i.e., SCR) in the overall sample. Although exposure to a higher number of traumatic events was associated with elevated SCR across all task conditions, SCR did not differ between threat in the presence of conditioned safety (i.e., SSL) relative to threat alone in a trauma-related manner. At the neural level, however, higher levels of trauma exposure were associated with lower hippocampal, amygdala, and dorsolateral prefrontal cortical activation during SSL. These findings suggest that while conditioned safety signals can reduce fear in the presence of threat even among individuals exposed to higher degrees of trauma, the neural circuitry involved in SSL is in fact sensitive to trauma exposure. Future research investigating neural processes during SSL among individuals with PTSD or anxiety can further elucidate the ways in which SSL and its neural correlates may reduce fear and link trauma exposure with later mental health conditions.

4.
Behav Neurosci ; 136(6): 528-540, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395014

RESUMO

The COVID-19 pandemic is an ongoing stressor that has resulted in the exacerbation of mental health problems worldwide. However, longitudinal studies that identify preexisting behavioral and neurobiological factors associated with mental health outcomes during the pandemic are lacking. Here, we examined associations between prepandemic coping strategy engagement and frontolimbic circuitry with internalizing symptoms during the pandemic. In 85 adults (71.8% female; age 18-30 years), we assessed prototypically adaptive coping strategies (Connor-Davidson Resilience Scale), resting-state functional magnetic resonance imaging functional connectivity (FC) of frontolimbic circuitry, and depression and anxiety symptoms (Beck Depression Inventory, Screen for Child Anxiety-Related Emotional Disorders-Adult, respectively). We conducted general linear models to test preregistered hypotheses that (1) lower coping engagement prepandemic and (2) weaker frontolimbic FC prepandemic would predict elevated symptoms during the pandemic; and (3) coping would interact with FC to predict symptoms during the pandemic. Depression and anxiety symptoms worsened during the pandemic (ps < .001). Prepandemic adaptive coping engagement and frontolimbic FC were not associated with depression or anxiety symptoms during the pandemic (uncorrected ps > .05). Coping interacted with insula-rostral anterior cingulate cortex (ACC) FC (p = .003, pFDR = .014) and with insula-ventral ACC FC (p < .001, pFDR < .001) to predict depression symptoms, but these findings did not survive FDR correction after removal of outliers. Findings from our preregistered study suggest that specific prepandemic factors, particularly adaptive coping and frontolimbic circuitry, are not robustly associated with emotional responses to the pandemic. Additional studies that identify preexisting neurobehavioral factors implicated in mental health outcomes during global health crises are needed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
COVID-19 , Pandemias , Adulto , Criança , Feminino , Humanos , Adolescente , Adulto Jovem , Masculino , Depressão , Estudos Longitudinais , Ansiedade/psicologia , Adaptação Psicológica
5.
Artigo em Inglês | MEDLINE | ID: mdl-35959474

RESUMO

Background: The ongoing COVID-19 pandemic is a major stressor that has been associated with increased risk for psychiatric illness in the general population. Recent work has highlighted that experiences of early-life stress (ELS) may impact individuals' psychological functioning and vulnerability for developing internalizing psychopathology in response to pandemic-related stress. However, little is known about the neurobehavioral factors that may mediate the association between ELS exposure and COVID-related internalizing symptomatology. The current study sought to examine the mediating roles of pre-pandemic resting-state frontoamygdala connectivity and concurrent emotion regulation (ER) in the association between ELS and pandemic-related internalizing symptomatology. Methods: Retrospective life-stress histories, concurrent self-reported ER strategies (i.e., reappraisal and suppression), concurrent self-reported internalizing symptomatology (i.e., depression- and anxiety-related symptomatology), and resting-state functional connectivity data from a sample of adults (N = 64, M age = 22.12, female = 68.75%) were utilized. Results: There were no significant direct associations between ELS and COVID-related internalizing symptomatology. Neither frontoamygdala functional connectivity nor ER strategy use mediated an association between ELS and COVID-related internalizing symptomatology (ps > 0.05). Exploratory analyses identified a significant moderating effect of reappraisal use on the association between ELS and internalizing symptomatology (ß = -0.818, p = 0.047), such that increased reappraisal use buffered the impact of ELS on psychopathology. Conclusions: While frontoamygdala connectivity and ER do not appear to mediate the association between ELS and COVID-related internalizing symptomatology, our findings suggest that the use of reappraisal may buffer against the effect of ELS on mental health during the pandemic.

6.
Dev Psychobiol ; 63(6): e22158, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34292596

RESUMO

Children make up over half of the world's migrants and refugees and face a multitude of traumatic experiences prior to, during, and following migration. Here, we focus on migrant children emigrating from Mexico and Central America to the United States and review trauma related to migration, as well as its implications for the mental health of migrant and refugee children. We then draw upon the early adversity literature to highlight potential behavioral and neurobiological sequalae of migration-related trauma exposure, focusing on attachment, emotion regulation, and fear learning and extinction as transdiagnostic mechanisms underlying the development of internalizing and externalizing symptomatology following early-life adversity. This review underscores the need for interdisciplinary efforts to both mitigate the effects of trauma faced by migrant and refugee youth emigrating from Mexico and Central America and, of primary importance, to prevent child exposure to trauma in the context of migration. Thus, we conclude by outlining policy recommendations aimed at improving the mental health of migrant and refugee youth.


Assuntos
Migrantes , Adolescente , América Central , Criança , Humanos , Saúde Mental , México , Neurobiologia , Políticas , Estados Unidos
7.
Dev Cogn Neurosci ; 50: 100974, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147988

RESUMO

Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identification. While a growing literature has yielded valuable insights into the nature of brain structure and function in pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging research. In this review, we first discuss these challenges and the promise of 'big data' to map neurodevelopmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant challenges of 'big data' and propose future directions through which large publicly available datasets can advance knowledge of deviations from normative brain development in anxiety. Leveraging 'big data' will be essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for identifying markers of risk and novel treatment targets.


Assuntos
Transtornos de Ansiedade , Ansiedade , Big Data , Adolescente , Encéfalo , Criança , Estudos Transversais , Humanos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31690501

RESUMO

BACKGROUND: Findings on structural brain volume associated with pediatric posttraumatic stress disorder (PTSD) have been variable, and it is unclear whether any structural differences are specific to pediatric PTSD in comparison with adult PTSD or other co-occurring pediatric psychiatric conditions. METHODS: We tested volumetric brain differences between pediatric groups with and without PTSD in a region-of-interest meta-analysis. We conducted meta-regressions to test the effects of age and sex on heterogeneous study findings. To assess specificity, we compared pediatric PTSD with the following: adult PTSD, pediatric trauma exposure without PTSD, pediatric depression, and pediatric anxiety. RESULTS: In 15 studies examined, pediatric PTSD was associated with smaller total gray matter and cerebral, temporal lobe (total, right, and left), total cerebellar vermis, and hippocampal (total, right, and left) volumes, compared to peers without PTSD. In the pediatric PTSD group, but not the comparison group, we found a trend toward smaller total, right, and left amygdalar volumes. In an external comparison, smaller hippocampal volume was not significantly different between adult and pediatric PTSD groups. Qualitative comparisons with a pediatric trauma exposure without PTSD group, a pediatric depression group, and a pediatric anxiety group revealed differences that may be unique to pediatric PTSD, and others that may be convergent with these related clinical conditions in youth. CONCLUSIONS: Pediatric PTSD is associated with structural differences that parallel those associated with adult PTSD. Furthermore, pediatric PTSD appears to be distinct from other related pediatric conditions at the structural level. Future studies employing longitudinal, dimensional, and multimodal neuroimaging approaches will further elucidate the nature of neurobiological differences in pediatric PTSD.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/patologia , Adolescente , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/patologia , Criança , Transtorno Depressivo/diagnóstico por imagem , Transtorno Depressivo/patologia , Feminino , Humanos , Masculino , Tamanho do Órgão
10.
J Neurosci ; 35(18): 7287-94, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25948276

RESUMO

Pyramidal neurons in layers 2/3 and 5 of primary somatosensory cortex (S1) exhibit somewhat modest synaptic plasticity after whisker input deprivation. Whether neurons involved at earlier steps of sensory processing show more or less plasticity has not yet been examined. Here, we used longitudinal in vivo two-photon microscopy to investigate dendritic spine dynamics in apical tufts of GFP-expressing layer 4 (L4) pyramidal neurons of the vibrissal (barrel) S1 after unilateral whisker trimming. First, we characterize the molecular, anatomical, and electrophysiological properties of identified L4 neurons in Ebf2-Cre transgenic mice. Next, we show that input deprivation results in a substantial (∼50%) increase in the rate of dendritic spine loss, acutely (4-8 d) after whisker trimming. This robust synaptic plasticity in L4 suggests that primary thalamic recipient pyramidal neurons in S1 may be particularly sensitive to changes in sensory experience. Ebf2-Cre mice thus provide a useful tool for future assessment of initial steps of sensory processing in S1.


Assuntos
Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Vibrissas/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...